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Automatic Decomposition of the
Clinical Electromyogram

KEVIN C. McGILL, MEMBER, IEEE, KENNETH L. CUMMINS, MEMBER, IEEE, AND LESLIE J. DORFMAN

Abstract—We describe a new, automatic signal-processing method
(ADEMG) for extracting motor-unit action potentials (MUAP’s) from
the electromyographic interference pattern for clinical diagnostic pur-
poses. The method employs digital filtering to select the spike compo-
nents of the MUAP’s from the background activity, identifies the spikes
by template matching, averages the MUAP waveforms from the raw
signal using the identified spikes as triggers, and measures their am-
plitudes, durations, rise rates, numbers of phases, and firing rates.
Efficient new algorithms are used to align and compare spikes and to
eliminate interference from the MUAP averages. In a typical 10-s signal
recorded from the biceps brachii muscle using a needle electrode during
a 20 percent-maximal isometric contraction, the method identifies 8-15
simultaneously active MUAP’s and detects 30-70 percent of their oc-
currences. The analysis time is 90 s on a PDP-11/34A.

I. INTRODUCTION

LINICAL electromyography is a technique for diag-

nosing neuromuscular disorders by analyzing the
electrical signal recorded from a contracting muscle using
a needle electrode. The signal, called an electromyogram
(EMG), is made of trains of discrete wavelets called mo-
tor-unit action potentials (MUAP’s) which result from the
repetitive discharges of groups of muscle fibers—the term
motor unit referring collectively to one motoneuron and
the group of muscle fibers it innervates. Distinct MUAP’s
can be seen only during weak contractions when few mo-
tor units are active. During strong contractions, the
MUAP’s are so numerous that the EMG becomes a noise-
like ““interference pattern.”

Diagnosis is based on the properties (amplitude, dura-
tions, and complexity) of the individual MUAP’s—small,
fragmented MUAP’s indicating muscle-fiber loss in my-
opathies; large, long-duration MUAP’s indicating collat-
eral reinnervation accompanying motoneuron dysfunction
in neuropathies [1]—and on the intensity and complexity
of the interference pattern—which reflect the pattern of
motor-unit recruitment. Most electromyographers still as-
sess these properties qualitatively using an oscilloscope
and a loudspeaker.

Quantitation is expected to make EMG analysis more
objective, reproducible, and diagnostically sensitive [2]-
[5]. Several methods have been developed for quantita-
tively measuring MUAP properties [1], [6]-[12], but they
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are limited to weak contractions [less than 5 percent max-
imum voluntary contraction (MVC)] due to their inability
to decompose signals containing more than four or five
MUAP’s. They are, hence, unable to measure high-
threshold MUAP’s. The method of LeFever and De Luca
[13] can analyze EMG’s recorded during strong contrac-
tions, but it is too time consuming for clinical use. Studer
and Gerber et al. [14], [15] recently reported a method
capable of accurately decomposing signals containing
seven MUAP’s. Several methods have also been de-
veloped for quantitatively characterizing the interference
pattern, e.g., in terms of its turn rate or power spectral
density [16]-[25], but they have proven to be neither as
physiologically well founded nor as diagnostically sensi-
tive as methods that measure MUAP properties.

This paper describes a new computer program
(ADEMG, for automatic decomposition electromyogra-
phy) which can extract as many as 15 simultaneously ac-
tive MUAP’s from EMG’s recorded at strengths up to 30
percent MVC. ADEMG is designed to analyze EMG’s re-
corded during 10-s constant isometric contractions using
a standard needle electrode and so to be a convenient ad-
junct to the conventional qualitative EMG examination.
The analysis time is 90 s on a PDP-11/34A computer.

The program achieves its high level of performance
through four innovative signal-processing techniques: 1) a
fast preprocessing filter which suppresses background
noise and transforms the MUAP’s into sharp, easily iden-
tifiable spikes; 2) an efficient new algorithm for aligning
and classifying the spikes which achieves high temporal
resolution at a low sampling rate; 3) a method for verify-
ing the identified spike trains based on the regularity of
their interspike intervals; and 4) a new algorithm for back-
averaging the MUAP waveforms from the raw EMG which
eliminates interference caused by other MUAP’s.

Section II presents an overview of ADEMG. Sections
III-VI discuss the four signal-processing steps. Section
VI discusses the program’s range and limitations.

II. OVERVIEW

The EMG signal is recorded using a standard concentric
or monopolar needle electrode during a 10-s constant iso-
metric contraction. Constancy ensures steady MUAP fir-
ing patterns and minimizes the chance of electrode slip-
page. The force of contraction should optimally be a
certain fixed percentage of the muscle’s full strength to
ensure reproducibility and conformity with normative data.
Clinical methods are described more fully in [26]. The
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EMG signal is amplified by a standard electromyograph
and band-pass filtered as usual (e.g., 8 Hz-8 kHz). The
signal is then antialias filtered at 5 kHz, digitized at 10
kHz, and written to disk for subsequent computer pro-
cessing.

The signal processing consists of four steps (Figs. ! and
2): 1) the raw EMG signal is digitally filtered to transform
the sharp rising edges of the MUAP’s into narrow spikes
better suited for detection and classification; 2) the spikes
that excecd a certain detection threshold are classified by
a one-pass template-matching method which automati-
cally recognizes and forms templates of the recurring
spikes; 3) cach tentatively identified spike train is veri-
fied by examining the regularity of its interspike intervals
(ISI’s); and 4) the MUAP’s corresponding to the verified
spike trains are averaged from the raw signal using the
identified spikes as triggers.

Finally, the amplitude, duration, number of phases, rise
rate, firing rate, and coeflicient of ISI variation are esti-
mated for each identified MUAP. Statistics on these var-
iables are accumulated over all recordings from different
sites in the same muscle and printed out. Optionally, the
MUAP waveforms, ISI histograms, and firing patterns can
also be printed out.

[Il. PREFILTERING

MUAP spikes originating from muscle fibers close to
the clectrode have sharp rising edges while MUAP's orig-

471

250
6 %" 8 j\[\ﬂ Y
20 ms

Fig. [. (Top) Raw EMG scgment recorded {rom biceps brachii using concentric needle electrode—a typical “mixed interference
pattern™ in which the individual MUAP's are difficult to identify and characterize because of superimpositions. (Middle) Same
segment after filtering using the sccond-order differentiating filter. The 1dentities of the spikes as determined by ADEMG urc
shown. (Bottom) The MUAP waveforms corresponding to the nine identificd spikes.

inating farther away are broadened due to the low-pass-
filtering character of the muscle tissue [27]. As a result,
high-pass filtering [13], [28] or differentation [29] is ef-
fective in selecting the spikes from the background activ- -
ity. The effect of such filtering is shown in Fig. 3: the
MUAP spikes are accentuated and the background activ-
ity is suppressed.

ADEMG uses one of the following two prefilters:
(first order)

(la)
(1b)

Xe = Yoy T Y-

X, = Voo — Yorl — Y F Yy (second order)

where y, is the sampled raw signal and x, is the sampled
filtered signal. These filters belong to a class of so-called
“low-pass differentiators™ [30] and have the following
properties: 1) they are designed for efficient “*Nyquist-
rate”” sampling, 2) they have excellent temporal resolution
resulting from their wide bandwidths, and 3) they are very
fast, requiring only a few additions and subtractions per
sample.

From a time-domain point of view, these filters compute
approximations of the first and second derivatives of the
input signal and thus accentuate the rapid rising cdges of
the MUAP’s, converting them into narrow monophasic
and biphasic spikes, respectively. (Higher order differen-
tiation would produce polyphasic spikes less suitable for
detection purposes.) Differentiation is sometimes avoided
in signal processing becausc it unduly accentuates high-
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Fig. 2. Flowchart of ADEMG program.

U«w

250 uVv

SPECTRAL
RAW SIGNAL DENSITY
10 ms
VJ H}y wl‘;r" o Q
TRANSFER
1st-ORDER FILTERING FUNCTION
E 0 kHz 5
TRANSFER
2nd-ORDER FILTERING FUNCTION

Fig. 3. EMG prefilters. (Top) Raw EMG segment and its power spectral
density. (Middle) First-order low-pass differentiator: its effect on the EMG
signal and the magnitude of its transfer function. (Bottom) Second-order
low-pass differentiator: its effect on the EMG signal and the magnitude
of its transfer function.

frequency noise, but it can be performed safely on high-
SNR signals with band-limited derivatives by restricting
the operation to the frequencies of interest [30]. As Fig.
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3 shows, the filters act as differentiators up to only about
half the folding frequency and gently cut off above that.
Thus, they are tailored for sampling at the Nyquist rate of
the MUAP’s first or second derivative, respectively.

From a frequency-domain point of view, the f(ilters are
band-pass filters which pass the energy from the MUAP's
rising edges and suppress the low-frequency background
activity and the high-frequency thermal noise.

The spikes in the filtered signal have several advanta-
geous properties that make them easier to work with than
the MUAP’s in the raw signal. For one thing, they can be
reliably detected by a simple threshold-crossing detector.
Also, they are quite narrow and can be resolved at close
temporal separations. Moreover, they precisely mark the
MUAP’s times of occurrence and can be used to align the
MUAP's for averaging.

Furthermore, despite their narrowness, the spikes are
more distinguishable than the MUAP’s themselves. This
is primarily due to the suppression of low-frequency noise,
as can be seen in Fig. 4, which shows ten occurrences of
each of three typical MUAP’s both before and after fil-
tering. The effect of filtering on distinguishability can be
seen quantitatively in the separation matrices [31] of Ta-
ble [. Each entry shows the separation between a pair of
MUAP’s as calculated by the formula E/L"?¢, where E*
is the energy of the difference between the waveforms, L
is the waveform duration (32 samples), and o is the rms
noise amplitude. A separation of five is necessary for ac-
curate (> 95 percent correct) classification [31], [32], and
1s only achieved after filtering.

IV. Spike CLASSIFICATION

ADEMG identifies the MUAP’s in the raw signal by
performing template matching on the spikes in the filtered
signal.

ADEMG’s spike-detection threshold « is set to a coef-
ficient ¢, (typically 3.5) times the standard deviation of the
base-line noise. « is computed by solving the following
implicit equation which automatically partitions the signal
into base-line and nonbase-line components:

T T 12
lefl(a, t)/ Zl(a, I)J
= t=1

where x, is the sampled filtered signal and /(«, 1) is the
baseline-component indicator function

o= ¢ (2a)

1, if |x| < a,

o, 1) = (2b)

0, otherwise.
The calculation typically uses only the first 0.2 s of data
(i.e., T} = 2000).

ADEMG detects each spike that exceeds the threshold
and, to facilitate spike/template comparisons, computes
its canonically registered discrete Fourier transform
(CRDFT)[33],[34]. The CRDFT is obtained by first calcu-
culating the DFT of the set of samples that make up the
spike (32 samples if first-order filtering is used, 16 sam-
ples if second order). Then the spike’s peak is located with
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Fig. 4. Ten occurrences each of three MUAP's from the EMG of Fig. 1
after no filtering, first-order filtering, and second-order filtering. The
traces are superimposed to show how filtering enhances the distinguish-
ability of the units.

TABLE I
MUAP SEPARATION MATRICES

Unit 2 3 2 3 2 3
1 1.6 2.6 5.2 5.2 10.0 5.5
2 3.9 6.2 7.8
Filter: none 1st-order 2nd-order

high temporal resolution by interpolating the trigonome-
tric polynomial specified by the DFT coefficients that ap-
proximates the continuous waveform underlying the sam-
ples [33]. Finally, the DFT is rotated in a way
corresponding to time shifting the peak to the midpoint of
the analysis interval. The resulting ‘“‘canonical” registra-
tion is independent of the arbitrary phase of the samples.
‘The interpolation implicit in the CRDFT representation
makes precise spike/template alignment possible when the
EMG signal is sampled at its Nyquist rate of 10 kHz. Dis-
crete-time template-matching methods, on the other hand,
require oversampling at 5-7 times this rate in order to re-
duce misalignment errors resulting from time quantization
[13], [31]. The slower rate is more efficient since the sam-
ples can be written directly to disk without analog-tape
buffering and they take up only a fraction of the storage.
Canonical registration implicitly aligns all spikes and
templates with one another in a peak-to-peak fashion. This
alignment is sufficiently accurate—since the spikes are so
narrow—that spikes and templates can be compared di-
rectly, without first having to be aligned explicitly as in
other template-matching schemes [13], [31]. Table II
shows that the peak-to-peak alignment criterion is nearly
as accurate as the more commonly used maximum-cor-
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TABLE 11
INCRESE IN MISMATCH ERROR DUE
TO PEAK-TO-PEAK ALIGNMENT

Unit Al
1 1.6 percent
2 1.4
3 4.2
4 7.7
5 1.1
6 4.3
7 2.2
8 5.7
9 2.8

relation (least-square error) criterion. The table lists the
average increase in template mismatch error for several
typical spikes when the peak-to-peak rather than the max-
imum-correlation criterion is used. Even in the worst case,
the increase is only a small fraction of the total error
(which is due mostly to background noise).

ADEMG performs template matching in the CRDFT
domain to avoid the cost of transforming back into the
time domain. There are 50 template buffers, each holding
one CRDFT. Each new spike is compared to each tem-
plate using the formula

1 N2-1
e = N 1S — Xol? + N /Z:l 1S = X,|*
where X, k = 0,- - -, N/2 — 1, is the CRDFT of the
spike, S, is the CRDFT of the template, and N is the spike
length (16 or 32 samples). A match occurs if ¢” is less than
a certain fraction ¢, (typically 0.1) of the spike’s energy.
Calculation is streamlined by comparing the sum to the
match threshold after each term is added. The energy of
the spikes tends to be concentrated in the low-order DFT
coefficients; so when the spike and template do not match,
the sum usually reaches the threshold after the first few
(2-3) terms, and the rest do not have to be computed.

If a match does occur, the template is updated as fol-
lows:

Sk=(1 _C3)Sk+C3Xk, k=0,1,"',N/2 -1 (4)

where ¢, is the forgetting factor (typically 0.1) which al-
lows the template to track slow changes in spike shape. If
no match occurs, the new spike is stored as a new template,
with the least-frequently matched buffers being recycled
as needed. Notice that (3) and (4) are essentially identical
to their more familiar time-domain counterparts, both in
effect and in operation count.

ADEMG does not attempt to resolve superimpositions
and so fails to identify every firing of every MUAP. The
filtered spikes are usually narrow enough to be identified
at separations down to about 1 ms, resulting in identifi-
cation rates of between 40 and 70 percent.

3)

V. INTERSPIKE INTERVAL ANALYSIS

After the spike trains have been identified, ADEMG ex-
amines their firing patterns to verify that they correspond
to valid MUAP’s.
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Motor units fire fairly regularly during constant iso-
metric contractions. Their interspike intervals (ISI’s) have
an approximately Gaussian distribution whose standard
deviation is 10-20 percent of the mean [13], [35]. This
regularity can be seen in the ISI histogram of a train iden-
tified by ADEMG even when spikes are missing (due to
unresolved superimpositions) and erroneous spikes are
present (due to misidentifications). A typical ISI histo-
gram is shown in Fig. 5: it has one large mode at the
MUAP’s true mean ISI, smaller modes at multiples of the
true mean ISl due to missing spikes, and two counts at
small ISI’s due to one erroneous spike. ADEMG uses the
ISI histogram to perform the following four steps. (Spe-
cific algorithms are presented in [34].)

First, ADEMG identifies and merges together tem-
plates that correspond to the same MUAP. The identifi-
cation is based on similarity of spike shape and regularity
of the combined firing pattern of the templates.

Second, ADEMG identifies templates that are time
locked to one another. These usually result from com-
plexly shaped MUAP’s, including MUAP’s with late com-
ponents, that produce multiple spikes when filtered, each
of which is mistakenly identified as a separate unit. From
each set of time-locked templates, ADEMG keeps only
the one template with the most identified spikes.

Third, ADEMG estimates the following parameters for
each train: true mean ISI, coefficient of ISI variation
(mean/standard deviation), identification rate (percentage
of firings that were identified), and number of erroneous
spikes. The train is accepted as valid if there are at least
25 valid spikes, the number of valid spikes exceeds the
number of erroneous ones, and the identification rate is
greater than 40 percent.

Fourth, ADEMG uses a maximum-a-posteriori decision
rule to reject the erroneous spikes from the individual valid
MUAP trains. This is done in order to improve the ac-
curacy of the waveform averages.

VI. MUAP AVERAGING

After the MUAP trains have been verified, ADEMG
passes back through the raw EMG to average out the
MUAP waveforms, using the identified spikes as triggers.

ADEMG first computes the simple MUAP averages as
follows:

Ni

i

yi = t=—L2+1,---,L02,

1
N Z yh nt

i=1,, M (6)

where y' is the simple average of the ith (of M) MUAP, y
is the raw signal, {¢, ,, n = 1, - - -, N;} is the list of iden-
tified firing times for MUAP i, and L is the averaging
length [typically 256 samples (25.6 ms)].

ADEMG then adjusts the simple averages to cancel out
the effects of interference from other MUAP’s in the fol-
lowing way. A list {7;;,, n = 1, -+, N;;} is compiled
for each pair of MUAP’s (i,j) containing the offsets be-
tween them every time they interfere (i.e., occur within
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Fig. 5. (Left) MUAP train firing pattern with several missing spikes and
one erroneous one. (Right) Histogram of interspike intervals (ISI's).
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Fig. 6. Average MUAP waveforms for three MUAP's from the EMG of
Fig. 1 before and after interference cancellation. The bottom traces are
‘“‘averages of flat baseline.”

L/2 samples of each other). Then the averages are adjusted
as follows:

Al i

Yr=Y—

[} M&

1 .
ﬁ y{—ﬂ‘j,n

n

ﬂllMg

J
j

t= L2+ 1,---, L2, i=1,-"-

M (7)

where §' is the adjusted average of the ith MUAP. Equa-
tion (7) is shown in [34] to be a good approximation to
the least-squares averaging algorithm we presented previ-
ously in the frequency domain {33]. It has the advantages
of being computationally faster and of being free from
wrap-around problems.

The effect of interference cancellation is shown in Fig.
6 for three MUAP’s from the EMG of Fig. 1. The left-
hand traces show the simple averages, and the right-hand
traces show the adjusted averages. The bottom two traces
illustrate the amount of noise still left after averaging: they
show “‘estimates of flat baseline’” obtained by averaging
100 L-point-long segments chosen randomly from the
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EMG signal. The expected value of such an average is
zero, and its rms amplitude gives an estimate of the
amount of residual noise in the other averages. Interfer-
ence canccllation typically improves MUAP signal-to-
noise ratios by a factor of 2 : 4, and—as seen in Fig. 6—it
particularly enhances the low-level beginning aad ending
portions.

Averaging and interference cancellation are not as se-
verely affected by time quantization as template matching
is, and so can be safely performed in discrete time (i.e.,
sample by sample after alignment to the nearest discrete
sampling interval, but without interpolation). The wave-
forms included in a discrete-time average will be out of
phase by amounts randomly distributed in the interval
{~T72,T/2], where T is the sampling interval. The effect
is to blur the true average by convolving it with a rectangle
function one sampling interval wide or, equivalently, by
passing it through a filter whose transfer function is
sin{fwT772)/(w172) {36]. At a sampling rate of 10 kHz, this
is a very mild filter whose chief effect is to reduce MUAP
amplitudes by a few tenths of a percent. Time quantization
of the offsets 7 results in incomplete cancellation, but this
effect is minimal when N, is large (> 30).

VII. Discussion

ADEMG has been programmed on a PDP-11/34A mini-
computer with an FP-11 floating-point processor at the
Stanford EMG Laboratory. The program is written in For-
tran, with the computation-intensive subroutines coded in
assembly language. The program has been optimized for
speed and can analyze a 10-s record in 90 s. The pro-
gram’s ability to accurately identify MUAP’s, track their
firing patterns, and extract their waveforms has been dem-
onstrated by two experiments involving independent
checks on MUAP behavior [26], [34]. Its robustness has
been demonstrated by its reliability in our preliminary
data-gathering studies {26], [37].

Preliminary experience has shown that ADEMG per-
forms very well on signals with sharp MUAP’s and low
background noise. The signal’s acceptability can be
judged at recording time by its sharp oscilloscope appear-
ance and its crisp sound, indicating that the electrode’s
lead-off surface is in direct contact with muscle fibers
rather than connective tissue. Some care is needed in
selecting a recording sitc, but not the precise optimiz-
ation needed in classical MUAP analysis [1]. ADEMG can
analyze signals with up to 8-15 simultaneously active
MUAP’s—corresponding to a force level of 20-40 percent
MVC. Above this, the noise and interference are too great
and performance deteriorates.

ADEMG’s performance is illustrated in Fig. 7, which
shows MUAP waveforms obtained from the same site in
the biceps brachii muscle at 7, 15, and 30 percent MVC.
Seven MUAP’s were identified at 7 percent MVC, and all
but one were tracked at the higher contractions (MUAP |
was lost in the noise at 30 percent MVC). Three additional
MUAP’s were identified at 15 percent MVC, and another
three at 30 percent MVC. These later-recruited MUAP’s
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UNIT 7% MVC  15%MVC 30% MVC UNIT 7% MVC 5% MVC 30% MvC

16.7 173 15.7 155
W e

4% 28%

0% 53% 5% 67%

15.0 15.1 154

65% 46% %

4 — 1 I
84'/.‘/\ 60% 64% ! 3%

14.2 15.8 164 {

5 I\/& 12 ) ek
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69% 8% 62%

20m ms

Fig. 7. MUAP’s recorded from the same site in the biceps brachii at three
different levels of contraction. With each MUAFP are shown its firing rate
in hertz (above) and its identification rate (below). Segments of raw EMG
are also shown for each level of contraction.

arc particularly interesting because they could not have
been identified by other MUAP analysis methods. The
numbers in Fig. 7 indicate each MUAP's firing rate
(above) and identification rate (below). The identification
rates depend on spike size and noise level but are typically
between 40 and 70 percent, even during heavy interfer-
ence. These rates are sufficient for accurate estimation of
the MUAP waveforms, as shown by the consistency of the
estimates obtained at the different force levels. Standard
errors are typically <35 percent for amplitude, rise rate,
and firing rate estimates, and <20 percent for duration.

One important reason for ADEMG’s performance is the
use of the filtered spikes for classification rather than the
MUAP’s themselves. The spikes exhibit less interfer-
ence—they can be distinguished at separations down to
1 ms, an interval at which the MUAP’s are superimposed.
They also have higher signal-to-noise ratios, particularly
during moderately strong contractions with considerable
low-frequency background noise. These factors make it
possible to decompose signals containing as many as 15
MUAP’s. They also make it possible to achieve reliable
spike classification using a fast, automatic one-pass tem-
plate-matching technique (cf. the interactive clustering
technique in [15]). Moreover, they ensure adequate iden-
tification rates without the need to resolve superimposi-
tions. (Methods for resolving superimpositions are dis-
cussed in [34], but they increase computation time un-
acceptably.)
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Another important reason for high performance is the
use of constant isometric contractions. This ensures steady
firing rates so that firing parameters can be estimated from
imperfectly identified MUAP trains. It also lessens the
likelihood of electrode slippage and hence of changes in
spike shape. ADEMG uses a simple **forgetting average”
(4) to track gradual changes (cf. the optimal method in
[14]), but we find that when the clectrode is held carefully
spike shapes usually change very little throughout an en-
tire recording, and sometimes, as in Fig. 7, from one re-
cording to another. When substantial slippage does occur,
it can usually be detected at recording time by a change
in the signal’s sound.

Comparison of results obtained using ADEMG to
thosc obtained using other analysis methods must take into
account the fact that ADEMG is biased toward MUAP’s
with rapid rising or falling edges ( < 1.6 ms rise times) and
may fail to detect MUAP’s of considerable amplitude if
they have slower rise times.

In conclusion, ADEMG promises to be a powerful
addition to the electromyographer’s armamentarium.
ADEMG decomposes conventionally recorded EMG sig-
nals into their fundamental physiological components: the
MUAP’s and their firing patterns. It can handle signals
from contractions up to 30 percent maximal force (15
simultaneously active MUAP s), making it possible to col-
lect a large number of MUAP’s quite quickly and, for the
first time, to base clinical diagnosis on the properties of
later-recruited MUAP’s.
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