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High-Resolution Alignment of Sampled Waveforms

KEVIN C. McGILL anp LESLIE J. DORFMAN

Abstract —~Waveforms are often sampled faster than the Nyquist rate
to obtain desired temporal resolution, even though, theoretically, over-
sampling adds no information and should not be necessary. This paper
shows how high resolution can be achieved efficiently from data sam-
pled at the Nyquist rate by working with coefficients of the Fourier-
series expansion of the continuous interpolating waveform. Practical
algorithms are presented for aligning and comparing waveforms, locat-
ing peaks, resolving superimpositions, and averaging overlapping wave-
forms. The algorithms prove to be more accurate, and to require fewer
computations and less storage than techniques which employ continuous
oversampling in many signal-processing applications, particularly tem-
plate matching.

[. INTRODUCTION

N order to accurately compare two waveforms with random

arrival times, they must first be aligned to the point of max-
imum correlation [1], [2]. In practice, this is usually accom-
plished in discrete time by sampling the waveforms, aligning
the vectors of samples to maximize their cross correlation,
and comparing the aligned vectors [2]-[7] . Since this method
only allows discrete time shifts, its temporal resolution is only
*0.5 sampling intervals, and a high sampling rate is needed
to achieve sufficient resolution for accurate comparison.
Sampling at the Nyquist rate is far from adequate, asillustrated
in Fig. 1, and the rule of thumb is to oversample by a factor
of 5-7 [6], [7]. Alternatively, high resolution can be attained
by interpolating the Nyquist-rate samples as prescribed by the
sampling theorem [8], but this is considered computationally
burdensome.

This paper presents some practical algorithms for efficiently
working with sampled waveforms at resolutions finer than the
sampling interval. The approach is to treat the waveforms as
continuous functions represented by the coefficients of their
expansions in a suitable basis rather than as sets of discrete
samples. The problem of aligning out-of-phase waveforms
then becomes a continuous-time optimization problem which
can be solved with theoretically unlimited resolution. For
reasons of computational efficiency, the complex exponentials
rather than the sinc functions of the sampling theorem are
used as the basis functions. The approach leads to efficient
algorithms for aligning and comparing waveforms, locating
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IYig. 1. Two copies of the same waveform, sampled near the Nyquist
rate. Sampling at the Nyquist rate only sketches the underlying con-
tinuous waveform, and two renditions are apt to appear quite different
if the samples are out of phase.

peaks, resolving superimpositions of interfering waveforms,
and averaging overlapping waveforms. Since they make full
use of the information in the Nyquist-rate samples, the algo-
rithms are more accurate and require lower sampling rates, less
storage, and, in fact, fewer computations than discrete-time
techniques in many applications. )

Methods

The waveforms used below to illustrate the algorithms are
motor-unit spikes from filtered electromyograms (EMG’s).
The EMG’s were recorded from human biceps muscles during
moderate contractions using a concentric needle electrode,
sampled at the rate of 10 kHz, and digitally filtered by the sim-
ple low-pass differentiator [9]

Xn=Vn+1 = Vn- (1)

where y is the raw signal and x is the filtered signal. The pur-
pose of the filter is described in detail elsewhere [10], but
basically it transforms motor-unit action potentials into sharp
spikes and attenuates low-frequency potentials which are not
of interest. (Unlike a true differentiator, it also suppresses
high-frequency noise.) The resulting spikes are typically 16-32
sampling intervals in duration, including the initial and final
low-amplitude tails, and have high signal-to-noise ratios [(spike
energy)'/?/rms noise amplitude] —15-40, depending on the
spike—because of the reduced low-frequency interference. The
traces in Figs. 2-4 are all 32 sampling intervals long, and the
sample points have been interpolated for clarity.
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II. ALIGNING AND COMPARING WAVEFORMS
The Discrete Fourier Transform Representation

Any finite-energy waveform x(¢) can, for practical purposes,
be considered both band-limited to some frequency range [O,
1/2T] and time-limited to some period [0, NT]. x(¢) can then
be (approximately) reconstructed from its N samples x,, =
x(nT),n=0,1,---,N- 1, as follows:

X, 1 Nj2-1
x() =%(t) =+ —
N N &
j 21rkt) * (— ] 27rkt>]
1 X +X
[ k €Xp (NT k EXP NT
0<t<NT ()
where
N-1 -j2mnk
Xe= S x,,exp<’ ”") k=0,1,---,N-1 (3)
n=0 N

is the discrete Fourier transform (DFT) of the sequence x(nT),
and * denotes complex conjugation. Notice that (2) makes
use of the fact that X541, -, Xy -whichare coefficients
of negative-frequency sinusoids despite their positive sub-
scripts—equal the conjugates of the positive-frequency coeffi-
cients Xyjo -1, " -, X, since x isreal. Equation (2) alsoassumes
that Xy, is zero since the sampling theorem allows signal en-
ergy only at frequencies strictly less than 1/27.

A key point for the subsequent development is that x(z) is a
continuous function of the continuous variable ¢, and that the
techniques of continuous function theory (e.g., differentiation
with respect to #) can be brought to bear by operating on the
coefficients X;. The DFT representation is well suited for align-
ing waveforms because time shifts which are fractions of the
sampling interval can be computed by simple rotations, i.e.,

J 27rk¢)
N

Xi, = Xy exp ( “®

where Xy ¢ is the DFT of x((n + ¢)T). Another advantage of
the DFT representation is that the sums in (3) can be computed
quickly using the FFT algorithm [11]. For display purposes,
a smooth interpolation ‘of the samples x,, can be computed by
using the FFT algorithm to inverse transform a longer version
of X which has been appropriately padded with zeros [11].
In theory, a waveform cannot be both band-limited and time-
limited. Consequently, although %(¢) interpolates the sample
values x(nT) exactly, it only approximates x(¢) elsewhere. Also,
since %(t) is periodic, it approximates x(#) only in the interval
[0. NT]. and (4) is really a circular delay. Nevertheless, band-
limitedness can essentially be achieved by using an anti-aliasing
filter, and both the approximation error and the wrap-around
error (for small ¢) can be kept to the level of the background
noise by choosing NV large enough to include as much of the
waveform as rises significantly above the noise level. (Trunca-
tion resulting in discontinuity between xn_, and x, will give
rise to Gibbs oscillations at the beginning and end of the inter-
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polating waveform.) Hereafter, we will no longer distinguish
between the original-waveform x(z) and the interpolating wave-
form Xx(t), referring instead to both as the ‘“underlying”
waveform,

The Alignment Algorithm
It is possible to align two waveforms to a resolution finer than
the sampling interval using their DFT representations. The op-
timal least-squares alignment between two waveforms x(¢) and
s(2) is achieved by the offset ¢ which minimizes the alignment
error
N-1
e?= 'S [x((n+)T) - s(nT)]*. (5)
n=0
Equivalently, ¢ maximizes the cross correlation between x(¢ +

®T) and s(¢). The error can be expressed in the frequency do-
main using Parseval’s formula

Nj2-1

2 X Skl

1 2
e =— |X, - So|*+—
N|0 o| N &

(6)
where Sy is the DFT of s(nT).

Equation (6) can be minimized using Newton’s method [12],
which proceeds iteratively as follows:

oP*D = ¢ 4 7 (7
1 d2 2
u® if |u(”)’ <— and L& >0
2 de?
d,(P)
_(p) = 1 d62 8
u -— signf— otherwise ®)
2 d¢ o)
2 2,2
u(P) = - _‘_ie_ d 62 (9)
a6 |,/ 997 | 4

where the superscript indicates the iteration number. By en-
suring that the step i is always in the direction of the negative
gradient and limiting the step size to half a sampling interval,
(8) guarantees convergence to the nearest local minimum. The
required derivatives are obtained by differentiating (6) to get

de* 4 Ni2-1 {27k
— = (——) Im {Xg, 4 Sk} (10)
d¢ N /&= \N
d*e* 4 N2-1 (277k)2 "

=— ~—1] Re{X, 4 Sz} 11
do? N P N e Kk, @ k} (1)

The range of initial offsets from which the algorithm will
converge to the global minimum is fairly broad for wavelets
with sharp peaks, as illustrated in Fig. 2. The achievable resolu-
tion depends on the signal-to-noise ratio, and iterations should
continue until the step size becomes of this order. It can be
shown [1], [13] that for ideal low-pass noise (i.e., noise with
a flat spectral density up to the folding frequency), the achiev-
able resolution is o/8+/E where o is the rms noise amplitude,
E is the wavelet’s energy, and § is the wavelet’s normalized rms
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Fig. 2. Waveform alignment. (a) and (b) show the maximum initial
offsets between the two wavelets from which the alignment algorithm
will converge to the global least squares alignment (c).

bandwidth, which typically lies between 0.4 and 0.9 for sharp-
peaked wavelets. A conservative rule is to stop the algorithm
after computing Xy ,(p+1) when |utP)| < ¢//E. When the
wavelets are initally aligned so that their peak samples coincide,
convergence to |u|<0.05 sampling intervals typically takes
only one or two iterations.

Resolving Superimpositions

The DFT approach can be extended to determine the best
fit of two or more templates to a superimposition of interfering
waveforms. The alignment error in this case is

.2 | N-1
‘}-V_ | Sk, o1 ‘SM,k,¢M z (12)
where
J2nko
Si,k,d:ési,kexl)( I, ) (13)

and S; x and ¢; are the DFT and offset of the ith (of M) tem-
plate. This error can be minimized using the multidimensional
form of Newton’s method [12]

¢(p+l) =¢(p) + 4P (14)

H® ) = _g(? (15)

where

& is the vector of offsets: (¢; ¢, - - '¢M‘)T

u is the step: (uy Uy -+ - up)’
9%e?

0¢;0¢;

H is the Hessian matrix: [H]; ;=

) ] de? de? 0e2\7
g is the gradient: {— — -+ —]
04, 04, Oy
As in the single-dimensional case, two modifications to New-
ton’s method are needed to ensure convergence: indefinite

Hessians must be treated with care, e.g., by using the modified
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Cholesky factorization method [13] to solve (15); and the norm
of the step size must be limited to half of a sampling interval.
[terations should proceed until the norm of the step size is
sufficiently small. The derivatives are obtained by differentiat-
ing (12) to get

de? 4 N2zt (2nk
06 N & (7) Im {S; &, ¢, Dk } (16)
1 =
4 Nz2- 21rk>
N ; 163
a2e2 .
a¢,a¢ = * [Re {Si,k,¢ka}+|Si,k,¢1|2] l=]
J
4 N2- 20k 2
N Z ( ) Re{Si,k,:biSj*,k,qs]-} i#j
k=1
(17)
where
DkéXk"Sl,k,d:]' _SM,k,d)M- (18)

Two examples of multidimensional alignment involving wave-
lets with sharp peaks are shown in Fig. 3. In our experience,
initial alignment based on peak samples almost always leads to
convergence to the global minimum. Convergence (to [jull, <
0.05) typically takes two to four iterations in cases in which the
peaks of the component waveforms are distinguishable [as in
Fig. 3(a)], and three to ten iterations in cases in which the peaks
merge [as in Fig. 3(b)].

To resolve a superimposition for which it is not known which
templates or even how many templates are involved, it is neces-
sary to try all possible template combinations and pick the one
that gives the best fit. Each combination starts with zero, one,
or more than one template aligned with each peak sample of
the superimposition. The search can be quite time consuming
if there are many templates because of the large number of
combinations (although we have developed techniques to speed
the search somewhat [13]). De Figueiredo and Gerber [16]
have recently published an algorithm for resolving superimposi-
tions which reduces the set of admissible combinations using a
cross-correlation method.

[1l. LoCATING WAVEFORM LANDMARKS

The precise locations of waveform landmarks—zero crossings,
peaks, points of fastest rise—are needed to accurately measure
times of occurrence, latencies, and peak amplitudes. The wave-
form’s DFT representation provides an efficient way of locat-
ing these landmarks with high resolution. Suppose that we
want to find a zero of the mth derivative of x(r) (m = 0). The
value of the derivative evaluated at ¢ = ¢T can be expressed in
the frequency domain as follows:

dmx 1 N2:1 |:(j21rk)m (—jznk o
£X__ ELLUD X:
¢ N ,§1 N LeT\N ) "'{I

(19)

and the zero can be found using Newton’s method. The resolu-
tion achievable in locating a peak in the presence of ideal low-
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(a) (®)

Fig. 3. Resolving superimpositions. (a) The top traces show a segment
of EMG arising from the superimposition of three motor-unit spikes
and the best fitting summation of the unit’s templates as determined
by the multidimensional alignment algorithm. (Fach template is the
average of 50 spikes from the appropriate unit.) The lower traces
show the three templates at their optimal alignments. (b) Another

superimposition of the same three units and its resolution as deter-
mined by the algorithm.

pass noise can be shown [13] to be mo/+/3x"(t,) where o is
the rms noise amplitude and 7, is the time at which the peak
occurs. A safe rule is to iterate until the step size becomes less
than a/24 where A4 is the amplitude of the peak.

Interestingly, the landmark location problem is equivalent to
an alignment problem. Equation (19) can be rewritten

Nj2-1 /2 i\ !
)3 (—g)lnlle,‘p(%) ] (20)

k=1

d"x

do™
The ¢ which sets d"x/d¢™ = 0 also minimizes the alignment
error [sets de?/d¢ = 0 in (10)] when

g - (—j21rk)'""
k N .

This S has a particular significance: it is the DFT of the V-point
(m - 1)st-order differentiator kernel [14]. Thus, for example,
locating a wavelet’s peak is equivalent to aligning the wavelet
with the unit spike

2
N

(21

1 ifn=0
Sp = (22)
0 ifn=1,2--+ N-1
sin (nt/T) -
)y~ —— 23
== 23)
with DFT
Sp=1 k=0,1,--- N-1. (24)

We have found it convenient to specify a canonical registra-
tion for a wavelet’s DFT which is based on a prominent land-
mark rather than the arbitrary phase of the samples. In par-
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ticular, we use the peak-finding algorithim to rotate the DFT
until the wavelet’s peak occurs at time £= 0. The location of
the peak is a good estimate of a sharp-peaked wavelet’s time
of occurrence at high signal-to-noise ratios, and in this case,
canonical registration aligns wavelets well enough that they
can be accurately compared without having to use the align-
ment algorithm,

IV. AVERAGING OVERLAPPING WAVEFORMS

Wavelets identified by their resemblance to & template or by
a separate trigger are often averaged in order to reduce the ef-
fects of noise or to track slow changes in shape. To prevent
the wavelets’ random sampling phases from distorting the aver-
age, the wavelets should be properly aligned by the methods
described above. The averaging can then be performed in the
frequency domain, component by component, without having
to transform back to the time domain.

Many signals contain wavelets which arise from several iden-
tified units and interfere with one another. Simple averaging
is suboptimal in this case because it treats the interference as
unavoidable noise. More accuracy can be obtained by selec-
tively averaging only those occurrences which are free of inter-
ference, or by blocking or attenuating those portions of each
occurrence in which the interference occurs. Even better aver-
ages can be obtained by making a second pass through the data,
cancelling the interference with the first-pass wavelet estimates.

The frequency domain provides a way of averaging all the
wavelets simultaneously, making optimal use of the available
information. Let the identified activity be divided into Q
epochs, each N-samples long, such that each epoch contains
either one distinct wavelet or several overlapping ones. Let
Xg, « be the DFT of the gth epoch, and let

I if unit m’s wavelet occurs in epoch g
@™ 10 ifit does not

= the offset of unit m is epoch g, if it occurs where
m=1.-++, M, and M is the number of units.

bq, m

The problem is then to estimate the DFT’s of the wavelets
S, km=1.-"+,M so as to minimize the total squared error

-1

o N
=3 3 e

qg=1 =1

(25)

x

where

- 5q,MSM,k,¢q,M|2
(26)

2 — _ —_
€q k= }Xq.k 6q,151,k.¢q,1

is the error associated with the kth frequency component in
epoch g. The notation of (13) is used here to denote time-
shifted DFT’s. Since the frequency components are orthogonal,
(25) can be minimized component by component, i.e., by
finding

Qo
min Zeé’k fork=0,1,---,N/2- 1.

Sk,10 Sk, Mg =1 (27)
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This is a standard linear least-squares problem [15] which can
be written

8§, 1 ex <—j2Nk¢l ’ l> RN ex <—_j21rk¢,,M>
1,1 €Xp N 1,M €Xp N
12nko J2nkd
s exp (T 2) s e (FH2Y)
Sk ' Xl,k
N (28)
Sum, k X0,k
or in matrix notation
A S, =X, (29)

The symbol =means that Sy, is to minimize (X - A, 8;) * (X -
A Sy) where * denotes the complex conjugate transpose. The
solution to (28) can be found by solving the normal equations

A?:AkSk =A;Xk (30)

During data acquisition, the normal equations can be stored
explicitly and updated each time a new epoch is observed, as
follows:

(AF A @D = (AF A

- jamke, ,)
6 —_—
a.1 XP ( N

~J2mkd, m
84, M €XP (———N q >

21Ky, i2mkdq, M
* [8q,1 exp N o bg, M €Xp N

(31
(AE XD = (A5 XD

-2k,
s oo (%)

+ : X
_]27Tk(b M
b0 ()

After all the epochs have been acquired, the normal equations
can be solved by one of several computationally sound methods,
e.g., the Cholesky factorization method [15].

Notice that if none of the epochs contains superimpositions,
Aj Ay is a diagonal matrix whose m, m element counts the
epochs in which unit m occurs, and the estimate of the mth
unit is the simple average of those epochs after alignment. If
epochs containing superimpositions are included, the off-di-
agonal elements of AjA, keep track of the interference in
A¥ X, caused by superimpositions for each pair of units. The
major drawback of this method is its large memory requirement:
N(M?/2 + M) words as compared to NM for simple averaging.

q,k- (32)
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[Fig. 4. Averaging overlapping wavetforms. (a)—=(c) show three EMG
segments in which the spikes of two motor units occur side by side
and interfere with one another. (d) and (e) show the least-squares
averages of the spikes determined from these three segments by the
method described in the text (bold) and, for comparison, an inter-
ference-free occurrence of each spike (light).

As an example, Fig. 4 shows three segments of EMG in which
the spikes of two units interfere with each other, as well as
the least-squares averages of the spikes computed from these
segments by the above method.

V. DiscussioN

In order to attain high temporal resolution from sampled
data, the data must either be oversampled or the samples must
be interpolated. Oversampling is the practical choice in many
applications. It bestows a sort of continuity on the samples—
neighboring samples do not differ by very much -which makes
them suitable for displaying the averaging without interpola-
tion. I[n addition, it allows many continuous-time signal-pro-
cessing techniques, such as filtering and correlating, to be bor-
rowed by simply changing integrations to summations, and to
be implemented straightforwardly using shift registers and
tapped delay lines. (It should be pointed out that the proper
anti-alias filter setting when oversampling is not half the sam-
pling rate, but rather half the Nyquist rate of the signal: other-
wise, unnecessary high-frequency noise is admitted.) The
disadvantages of oversampling include the need for fast A/D
converters and long waveform buffers, and the fact that the
resolution is limited by the sampling rate. Also, discrete-time
optimization techniques are cumbersome, so that aligning wave-
forms [2]-[7] and resolving superimpositions [4] require
time-consuming exhaustive searches of all possible offsets.

Interpolating the sample points allows greater resolution at a
lower sampling rate. This is shown in Table |, which compares
the average squared alignment errors e? when simulated noisy
wavelets of random sampling phase were aligned with a noise-
free template using the DFT-based algorithm of Section I and
using the discrete-time cross-correlation method with oversam-
pling factors (o) of 2,4, and 8. For the DFT-based algorithm,
the average squared error is the sum of the noise variance (which
is listed in the right-hand column of the table), a negative bias
of about 10 percent due to signal/noise interaction, and a small
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TABLE |
AVERAGE ALIGNMENT ERROR €° AS A FUNCTION OF SIGNAL-TO-NOISE
RATIO (SNR) FOR DISCRETE-TIME ALIGNMENT (WITH OVERSAMPLING
FACTORS a = 2, 4, 8) AND FOR THE DFT-BASED AILIGNMENT
ALGORITHM. THE WAVELET OF FIG. | WAS USED AS THE TEMPLATE,
WITH N = 16, AND 600 NOisy, RANDOMLY ARRIVING WAVELETS WERE
SIMULATED AND ALIGNED TO CoMPUTE EACH ENTRY. THE LAST
CoLuMN SHOWS THE TOTAL NOISE VARIANCF FOR N SAMPLES FOR EACH
SNR; AND THE LAsT Row SHOws THF EXPECTED TIME-QUANTIZATION
ERROR (¢7;) FOR EACH BASED ON THF TEMPLATE'S CALCULATED
NORMALIZED rms BANDWIDTH OF 0.85. ALL ENTRIES ARE IN UNITS
OF (PERCENT ERROR)’, WHERE 100 PERCENT ERROR CORRESPONDS
TO AN rms ERROR EQuUAL TO E'? AND E 1S THE TEMPLATE'S ENERGY

? o2
Average of ( log Ee )
Noise
SNR =2 =y a=8 DFT Variance
10 101.3 93.8 92.1 90.7 100.0
20 31.7 24.9 23.2 22.6 25.0
30 19.4 12.5 10.7 10.3 1.1
40 15.0 8.03 6.28 5.98 6.25
® 9.84 2.34 0.61 0.30 0.00
2
Ctq 9.48 2.37 0.59 0.00

end-effect error of 0.30 (corresponding to 0.048 percent of
the template’s energy) due to violation of the time limitedness
assumption. For the discrete-time method, the average squared
error is the sum of the noise variance, the interaction bias, and
an error due to time quantization. Wheeler and Heetderks [5]
have derived an expression for the expected time quantization
error as follows. Since the alignment offset because of time
quantization is uniformly distributed in the interval [-T/2a,
T/2a| , the variance of a sample point due to this misalignment
is 7% |x'(£)1*/12a2. The total expected alignment error is there-
fore B2E/120® where E is the wavelet’s energy and 8 is its
normalized rms bandwidth

f [x'(D]? dt/E (33)

-0

Nj2-1 <271k>2

2 —_
& \W
The bottom line of Table | shows the expected time quantiza-

tion error calculated using the above formula.

At the high signal-to-noise ratios shown in Table [, the time
quantization error is an appreciable fraction of the noise vari-
ance for =2 or 4, and oversampling by a factor of 8 is neces-
sary to reduce it to less than 5 percent. The DFT-based algo-
rithm, on the other hand, does away with time-quantization
errors completely, without oversampling.

The DFT approach is also computationally more efficient
than the discrete-time approach at high signal-to-noise ratios
which demand large oversampling factors. It requires less
storage per wavelet (N versus etV words) and fewer operations
per full-wavelet maximum-correlationalignment (approximately
10N versus o2 real multiplications, where the former figure
assumes 1.5 iterations and does not count the FFT, and the
latter assumes that « shifts must be searched to find the best
alignment). The operation-count savings are even greater when
resolving superimpositions.

B'Z

N-1
Xl? /5 Xl (34)
k=0
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[t should be pointed out that other techniques besides full-
wavelet maximum correlation can be used to align wavelets.
For example, the correlation can be computed over only the
major spike component, or the alignment can be based solely
on the location of a landmark, such as the peak (asin canonical
registration) or a threshold crossing. These techniques are often
preferable to full-wavelet maximum correlation because they
require fewer computations, and, at high signal-to-noise ratios,
they are nearly asaccurate. For these techniques, the frequency
domain offers no computational advantages. However, since a
time-domain implementation requires oversampling (unless the
registering landmark can be detected by analog means and the
sampling time-locked to it), a frequency-domain implementa-
tion is advantageous if sampling speed is at a premium.

The algorithms in this paper achieve high temporal resolution
by approximating the underlying waveforms by continuous
functions. Although other bases could be used, for example,
the sin (n(¢/T - k))/n(¢/T - k) functions prescribed by the
sampling theorem, the complex exponentials have two compu-
tation advantages—namely, the speed of the FFT algorithmn
and their unique time-shift invariance: exp (j2nk, (¢t + 7)/NT)
retains its orthogonality to exp (j2nk,¢/NT) for all 7 for all
ky Fky.

The computational efficiency of the complex exponentials
can be seen by considering the use of a different basis. The
vector of coefficients of a waveform’s expansion in an arbitrary
basis X is obtained from the vector of sample values x by a
linear transformation X = Tx. The time-shift operator in the
transform domain is also a linear transformation: X, = D(¢) X.
Maximizing the correlation $*X, where § is thc transformed
template, requires calculation of the gradient $*D’(0) X and
perhaps the second derivative $*D"(0) X. For an arbitrary
basis, each of these calculations involves a full matrix-vector
product which costs N? operations (real multiplications), not
counting those needed to form D(¢). However, for certain
bases, considerable savings are obtained. For example, if the
sin (n(¢/T - k))/n(z/T - k) functions are used T = I then no op-
erations are needed to form X;and D, D', and D" are Toeplitz.
so multiplications by these matrices can be formulated as con-
volutions and calculated in less than N? operations using fast
convolution algorithms. (In fact, if the convolutions are com-
puted using the FFT algorithm, the alignment procedure be-
comes essentially identical to the algorithm based on the com-
plex exponentials.) When the complex exponentials are used
as the basis, X can be calculated using the FI-T algorithm which
requires only 2/Nlog, N operations. Also, because of the time-
shift invariance, D, D', and D" are diagonal, so that forming
D () requires only 2V operations (plus one sine and onc cosine
evaluation), and forming X,, the gradient, and the sccond
derivative requires only 2NV, 1.5V, and 1.5N operations, respec-
tively. )

One application for which the algorithms prescnted in this
paper are well suited is the classification of brief wavelets such
as nerve and muscle action potentials. A program which uses
the algorithms to automatically classify motor-unit action po-
tentials in the clinical EMG is described elsewhere | 10] . Briefly,
the raw EMG is digitally filtered to produce spikes, and each
spike is detected by a threshold crossing, transformed into the
frequency domain, canonically registered, compared to each
template, and averaged into the template it matches most
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closely. The motor-unit action potentials are then averaged
from the raw EMG using the identified spikes as triggers. The
templates are stored as canonically registered DFT’s, and all
comparing and averaging are done in the frequency domain.

Note added in proof: While this paper was in press, we be-
came aware of Hansen’s work [17] which presents an averag-
ing algorithm very similar to the one presented here.
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